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The one dimensional Hubbard model can be solved exactly. In the limit N--* oo, the energy 
per particle remains finite and can be expressed as an integral. The small B expansion in this 
limit is investigated. Several elementary derivations are presented as well as a simple formula 
which can be used to generate both small and large beta expansions. 

The one dimensional Hubbard model treats electrons on a lattice which repel 
when two of them are on the same site. Continued interest in the model is owed 
mainly to the fact that it describes a correlated system of particles which can be 
solved exactly for a finite number of sites. In fact, strongly correlated electrons in 
two dimensions are believed to be of great relevance for various properties of high- 
Tc superconductors. In the limit as N-*oo ,  Lieb and Wu [1] obtained a set of 
coupled integral equations which can be used to solve for the energy per particle for 
the case in which the number of electrons is equal to that of atomic sites. 

This article is intended to make accessible some very elementary techniques 
which can be used to expand a particular type of integral, which cannot be evalu- 
ated in closed form, in powers of small coupling and which also can be used to 
develop an expansion in inverse powers of the coupling. The techniques are quite 
general, and these kinds of manipulations ought to be applicable to other cases of 
physical interest. 

The energy in this case is defined by an integral and it is the purpose of this paper 
to investigate some of its properties. In particular, the expansion of the energy for 
small/3 is developed, and it is found to agree with the results of other authors. Also, 
a new approach is described which leads directly to an equation from which both 
the small and large/3 expansions can he derived. 

The Hamiltonian which describes the system is given by 

N N 

i=1 i=1 
~=-t,t 
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where all indices are taken modulo N, CN+l,~ = cl,~. Further, c~,,,(ci,~) is the crea- 
tion (annihilation) operator associated with the spin orbital [i, cr) located on the ith 
site and having spin ~r, n;,~ = c~,~ci,~ is the occupation number operator associated 
with the same spinorbital,/3 designates the so-called resonance transfer integral, 
and U = 700 the one center Coulomb repulsion integral. 

For the infinite chain, the analysis of Lieb and Wu leads to the following expres- 
sion for the energy per particle 

E = -4/3 [oo Jo(x)__~(x) dx 
J0 x(1 + e~) ' 

where J0, ./1 are Bessel functions. Let c = U/2/3, then the integration has no singula- 
rities when Re(c) > 0 because the integrand is an analytic function of c, but singula- 
rities can exist on the imaginary axis, or the region Re(c) < 0. Small/3 corresponds 
to large c and large/3 to small c. For simplicity, define the function P(c) to be 

V ( c ) =  f ° °J° (x )~(~dx .  (1) 
Jo x ( l + e  ) 

Expansions for both small and large coupling regimes when c > 0 can be devel- 
oped by first expanding the denominator of the integrand in an infinite series in 
powers ofe -cx as follows: 

/0 /0 ° ~Jo(xy~(x) a x =  x-ljo(x)S,(x) ~ ( - l )  k-~ e -~x ax. 
x(1 + e cx) k=l 

For c > 0, the order of integration and summation can be interchanged, so the 
integral to be considered is 

o ° ° x  1 e -kc~' J o ( x ) J ~ ( x )  d x .  

This expression can be expanded in either powers of c or inverse powers of c depend- 
ing on the size o f t  and it is the latter case which will be of interest here. An equation 
will be derived from which a unified derivation of the expansions which pertain to 
both coupling regimes can be developed. The first step is to express the product of 
Bessel functions in a different way. The first way of doing this is along the lines of 
Takahashi [2], however an elementary derivation is possible. 

T H E O R E M  1 

~(-1)"(2,,+ 1)! 2.+, 
,o(xV,(x) • (2) 

Proof 
Replace the Bessel functions 

converge absolutely 
by their infinite series representations which 
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~-~ ( -  1) n 2n-~-~ (-1)J (X'~ 2J +1 
Jo(X)JI  (X) = r~=O "-~J ( 2 )  j~=oj'-~'-~" 1)' \2,] " 

Using the Cauchy product rule for two series this can be expressed as 

~"(--1)n(~)2n+l~-'~(n~ 2 1 
J o ( x ) J l ( X )  = z_.,  

n=o ~"d \ u /  u +  1 

To finish the proof, the finite sum on the right will be carried out. 

L E M M A  

2 
~ 0 ( n ~  1 ( 2 n +  1), 
= \ u /  u + l  ( n + l ) !  2 

To prove this, integrate both sides of the binomial identity 

from 0 to x to obtain 

" l ( k )  1 + x),+l 
k~__0 ~-- ~ xk -- x(n + 1 ~  ((1 --1) 

then multiplying both sides the binomial identity gives 

n l (n )xk~-~(n .~x j  - 1 ((1 + x) 2~+1 
k~O~+'f k k j  / x(n 4- 1) 

(1 + x)n) . 

= j = 0  

The ruth term of the Cauchy product on the series on the left is just the sum given 
in the lemma when m = n, and the coefficient ofx ~ on the right is just 

1 ( 2 n + l )  

n + l  n + l  ' 

which is the required result. [] 

Therefore, from the theorem we have the following expansion 

(-1)"(2n + 1)! x2,, 
x-lJ°(x)Jl(x) = n=0 (n!(n + 1)!) 2 " 

It is straightforward to do the integral and obtain an expression which is valid for 
large c, or equivalently large 8. This expansion will be written down toward the 
end. 
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The following theorem may be used to give another derivation of the large c 
expansion. In addition, it may also be used to rewrite the integrand in a form which 
is suitable for developing the small c, or large/3, expansion. This is the form used 
by Misurkin and Ovchinnikov [3] in deriving their equation which is valid for 
small c. 

Although simplified, this proof of theorem 1 follows Takahashi's development. 
The first proof of theorem 2 below depends largely on theorem 1 and therefore is 
not independent of Takahashi. However, a new and quite different proof can also 
be given which is somewhat elementary and independent of the first proof. In the 
second proof, the idea will be to convert the product of Bessel functions to a double 
integral. 

THEOREM 2 
2 

Jo(x)J1 (x) = - f Jl (2xcos 99) cos 99 d99. 
rCJo 

(3) 

Proof l  
Using theorem 1, we have 

2 Jo(X)Jl (x) = ~--~- (-1)n xan+l ( 2n + 2  "~ _~ 
n~=O22n+2n[(n+ 1)! n +  1 / 2 

- ~ ( -1)  n x2,+lf0~cos2n+ 2 
- Z~=on!(n + 1)! 99 d99 

= f ~  Jl (2x cos 99) cos 99 d99. 
J0 

Proof2 
An integral representation for the product Jo(x)J1 (x) can be found by starting 

with the integral form of the Bessel functions [4] as follows 

1 f ~  f ~  ei~o-ix(sin 0+sin ~o) d0 d99 Jo(X)Jl(X) = ~  ~ ,~ 

1 --j_n --j_n e i~°-2ixsin½(°+~°) e°s½(°-~°) dO d99 (4) 
4~2 n rc 

Introduce new variables u and v defined by the equations 

0 - 9 9 = 2 u ,  0 + 9 9 = 2 v .  

Since the integrand is unchanged if both u and v are increased by rc or if u is 
increased by ~x while v is simultaneously decreased by ~, the region of integration 
may be taken to be the rectangle for which 0 ~< u ~< re, - n  ~< v ~< re. 
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To prove this, it is easy to see that  the square region of  integrat ion in (4) is 
ro ta ted  so that  in the u - v system, the vertices are on the coordinate  axes. It will be 
shown tha t  the contr ibut ion to the integral f rom the region to the left of  the v axis 
is the same as that  f rom the two triangles which would have to be added  to the 
region to the right of  the v axis to fo rm the complete  rectangular  region bounded  by 
0 ~< u ~< n and -Tt ~< v ~< ft. Consider  first the integrat ion over the top triangle to the 
left of  the v-axis, 

i °  v) dv du, 
ndO 

where 

~K ( u, v) = e i(u+v) -2ix cos  u sin v. 

In t roduc ing  the linear t ransformat ion  u = s - ~, v = t + zt this integral is trans- 
fo rmed  into 

/o 7 :r  ~K(s - n, t + re) dt ds = ~K(s, t) dt ds .  
n dO d - n  

The same  technique can be applied to the remaining region, and  since the absolute 
value of  the Jacobian  is 2, we have 

1/0 ; ----- e - i n  e i(v-2xcosusinv) dv du Jo(X)Jl (X) 

1 fo ~ • = ~ e-lUJ1 (2x cos u) du.  

Split t ing this up  into real and imaginary parts,  it can be shown that  the imaginary  
par t  vanishes,  as can be seen by considering the par t  of  the integral f rom ~/2  to ~. 
Sett ing r + rc = u and using J ,  ( -  t) = ( -  1 ) ' J ,  (t) it is easy to see that  

cos u J1 (2x cos u) du = cos r J1 (2x cos r)  d r .  

This  completes  the proof.  [] 

Consequent ly ,  the second p roo f  of  theorem 2 gives another  way of  generat ing 
the smal l /3  expans ion for the energy per particle. Simply substi tute the infinite 
series representa t ion for J1 (2x cos qo) and integrate te rm by term. 

Using  theorem 2, it is possible to t ransform the integral P(c) into an elliptic inte- 
gral of  the second kind, which will generate the small/3 expansion,  and  also it pro-  
vides the star t ing point  for developing the large/3 expansion.  To  do this, consider  
the general  integral  defined by 

2(a, A) = Jo(t)J1 (t)e-att ~ dt .  



164 P. Bracken / Small fl expansion for 1D Hubbardmodel 

Replacing Jo(t)J1 (t) by the expression derived in theorem 2, this becomes 

:J(a, A) = 2 dqo cos qo J1 (2t cos ~o)e-att A dt. 
n J0 

Consider the generalized version of the second integral given by 

o °° e-atj~(bt)t x dt. 

This will be written in terms of the hypergeometric function. Suppose that b is 
restricted so that Ibl < lal. If the integrand is expanded in powers of b, and we inte- 
grate term by term, we obtain 

o~ ~ _ , ( _ l ) m F ( A + u + 2 m + l )  ~+2m 
fO e-atju(bt)~ dt = 0Z~m-l-~(~Tm--@-i) a'~+v'----+--~'+--i (b)  

The final series converges absolutely, since [b[ < lal, and so the process of term by 
term integration is justified. Expressing the right hand side in terms of the hyper- 
geometric function gives 

f0 °° ( b )  ~F(A + u +  1) e-atjv(bt)tx dt = a~+lF(u + 1) 2FI 

( A + u + I  A + u + 2  -b_~) 
x 2 ' 2 ; u +  1; . 

This holds only when Re(a) >0 and [b I < la[ but as long as Re(a + ib) >0, which is 
the case here since b is strictly real, then both sides of this expression are analytic 
funct ions o f  b, and so the more  extensive range o f  validity is obtained by analytic 
cont inuat ion  to the complex  plane. For  the case o f  interest here, set v = 1 and 
A -- - 1 so that 

fo°°J,(2tcos~p)e-a't -1 dt = a-l cos~p2Fl (1,  l;2; ~c42 COS2 qO ) . 

Using the fact that 

2El (1 ,1;  2;~-~-2~) -- ( ( 1  + a~---~)½-1) 

and replacing r 2 by 4 cos 2 cp we have 

_ a ((a2 + 4cos2qo)½ - a ) .  2F1 (~,  1;2;~42 4c°s2 ~° ) 2 cos2 cp 

Substituting, we obtain the following remarkable form for 3(a, - 1) 

/o- :J (a, - 1 ) = 2 d~o((a 2 -t- 4 cos 2 ~p)½ - a ) .  
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This form for 3(a, -1  ) gives rise to the possibility of writing down a unified treat- 
ment for the expansions in both coupling regimes. Replacing a by kc the following 
expression for P(c) can be written down 

fo P(c) = _1Z(_ l )k+l  dqo(((kc): + 4cos 2 qo)½ - kc) . (5) 
"/~ k=l 

It is now possible to write down an elementary derivation for the large c expansion 
by factoring (kc) 2 out of the square root and then expanding using the binomial 
theorem to obtain 

1 ~ ( - 1 )  k-1 lm~2(--1)m-1 (2m'~ 2 1 ~(-1)  ~-I 1 
g(c) = ~c = ~ +-2 = 2 ~ m J 2m'-- l k=l kZ'n-1 c2m-1 

ln(2 ) 1~-~(-21_~)~-I(2mm)2 1 ( 2 ) 
= 2c + 2 m - 1  1 2 -1 ( ( 2 m - l )  1 c2m-1 

m=2 

where ((x) is the Riemann zeta function. This is just the expansion which can be 
found in Takahashi [2]. Replacing c by 5/2/3, the expansion in terms of/3 results 

ln(2) °° (-1)m-1 ( 2 r n )  2 
~(/3) = - " ~ / 3  + m~__2 24m----~ --~ 1 ) m 

x ( l  2 2 _ f ) ( ( 2 m - 1 ) ( ~ ) ~ - I / 3 2 m - ~ ,  (6) 

and it is easy to show that this series converges for values of 1/31 [0, 
If  a multiplicative factor of -4/3, which was neglected in writing (1), is 

included, an expansion of the Lieb-Wu energy per particle for the infinite chain for 
small/3 is obtained. In some ways, this is an improvement over the integral as far 
as performing calculations is concerned. For/3 in the interval [0, 5-4] one need only 
sum terms to get a value for the energy, however, outside this interval a summation 
technique must be applied and this is usually straightforward. 

Equation (5) is of interest in its own right because it can be used to develop an 
asymptotic expansion for the energy per particle which holds in the opposite limit 
as/3 tends to infinity. This has not been examined rigorously in the literature. 
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